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Background: Asthma morbidity has been associated with ambient air pollutants in time-series and

case-crossover studies. In such study designs, threshold effects of air pollutants on asthma outcomes

have been relatively unexplored, which are of potential interest for exploring concentration–response

relationships.

Methods: This study analyzes daily data on the asthma morbidity experienced by the pediatric

Medicaid population (ages 2–18 years) of Detroit, Michigan and concentrations of pollutants fine

particles (PM2.5), CO, NO2 and SO2 for the 2004–2006 period, using both time-series and case-crossover

designs. We use a simple, testable and readily implementable profile likelihood-based approach to

estimate threshold parameters in both designs.

Results: Evidence of significant increases in daily acute asthma events was found for SO2 and PM2.5, and

a significant threshold effect was estimated for PM2.5 at 13 and 11 mg m�3 using generalized additive

models and conditional logistic regression models, respectively. Stronger effect sizes above the

threshold were typically noted compared to standard linear relationship, e.g., in the time series

analysis, an interquartile range increase (9.2 mg m�3) in PM2.5 (5-day-moving average) had a risk ratio

of 1.030 (95% CI: 1.001, 1.061) in the generalized additive models, and 1.066 (95% CI: 1.031, 1.102) in

the threshold generalized additive models. The corresponding estimates for the case-crossover design

were 1.039 (95% CI: 1.013, 1.066) in the conditional logistic regression, and 1.054 (95% CI: 1.023, 1.086)

in the threshold conditional logistic regression.

Conclusion: This study indicates that the associations of SO2 and PM2.5 concentrations with asthma

emergency department visits and hospitalizations, as well as the estimated PM2.5 threshold were fairly

consistent across time-series and case-crossover analyses, and suggests that effect estimates based on

linear models (without thresholds) may underestimate the true risk.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Asthma causes a significant burden in children and is the
principal reason for preventable pediatric hospitalizations.
Studies since the mid-1980s, typically using daily counts of
asthma events and Poisson regression models, have associated
air pollutant exposures to acute asthma exacerbations, which are
surrogate measures of asthma attacks (Andersen et al., 2007;
ll rights reserved.

).
Babin et al., 2007; Moura et al., 2009; Stieb et al., 2009). Such
time-series data also have been examined using case-crossover
analyses (Barnett et al., 2005; Jalaludin et al., 2008; Lin et al.,
2003; Villeneuve et al., 2007), which are equivalent to Poisson
regression models when the case ascertainment period and
exposure status for the study cohort are the same at each time
point (Lu and Zeger, 2007; Navidi, 2008). However, the stability
and consistency of estimation of threshold parameters under both
designs have not been studied. While several pilot studies
examining mortality and morbidity endpoints and cardio-respira-
tory outcomes other than asthma have considered non-linear and
specifically threshold-type concentration–response relationships
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(Brook, 2008; Daniels et al., 2000; Dominici et al., 2002; Kim et al.,
2004; Pope and Dockery, 2006; Schwartz and Zanobetti, 2000;
Schwartz et al., 2002), relatively few asthma studies have
explored such models to study the relationship between pollutant
exposures and acute childhood asthma events. Instead, previous
studies investigating such associations have focused on linear
relationships.

In this paper, we examine associations between daily air
pollutant levels and asthma emergency department visits and
hospital admissions for the pediatric Medicaid population in
Detroit, Michigan. We explore potential threshold effects using
Poisson regression under the framework of generalized additive
models (Hastie and Tibshirani, 1986, 1990), and also under the
time-stratified case-crossover design using conditional logistic
regression models. Threshold effects have a distinct relevance in
air pollution epidemiology: they have a plausible biological basis,
and their results are easy to communicate and interpret since the
regression coefficients show effects occurring above (and possibly
below) a certain concentration. Our goals in this paper are to
(1) determine whether daily changes in asthma emergency
department visits and hospital admissions related to asthma
among the pediatric Medicaid population in Detroit are attribu-
table to fluctuations in ambient air pollutant concentrations of
carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide
(SO2), and particulate matter less than 2.5 mm in diameter (PM2.5),
(2) evaluate whether asthma emergency department visits and
hospital admissions show an exposure threshold, and compare
the risks estimated by models with and without thresholds, and
(3) examine whether estimated thresholds and the inferential
results are consistent across the two analytical approaches,
namely time-series and time-stratified case-crossover analyses.
An auxiliary objective is to provide a simple and readily imple-
mentable method to estimate thresholds for GAMs and condi-
tional logistic regression models that avoids use of complex
non-linear optimization routines.
2. Materials and methods

2.1. Study population and health data

Medicaid beneficiary and claims data were obtained from the Michigan Data

Warehouse of the Michigan Department of Community Health. These data provide

the most complete and readily available source of healthcare utilization for the

Detroit Medicaid-insured population. The population consists mainly of African–

American children from lower income families (Wu and Batterman, 2006). African

Americans are disproportionally affected by asthma and have greater morbidity

compared to other races even after for controlling for socio-economic status, and

thus are considered a high risk population for asthma-related events (Lieu et al.,

2002). Beneficiary files were used to identify all children less than 18 years of

age enrolled in Medicaid and residing in a Detroit zip code in the study period

2004–2006. To ensure a full-claims history, the study population was restricted to

those with continuous Medicaid enrollment (not less than 11 months), full

Medicaid coverage, and no other insurance. Extracted data included encrypted

Medicaid identifier, age, sex, race/ethnicity, date and residence location as geo-

coded coordinates at the time of visit, and diagnostic codes. Claims for asthma

emergency department visits and hospitalizations were identified as those with

any mention of diagnostic code 493.X (International Classification of Diseases, 9th

Revision, Clinical Modification). Claims were de-duplicated into unique encoun-

ters, and further restricted to exclude services at out-of-state locations. We

excluded individuals with two consecutive claims within 30 days to ensure that

the same exposure was not considered as case and control exposure when using

time-stratified case-crossover analyses with calendar month as the reference

frame. However, we did include individuals with multiple claims who did not fall

under the above exclusion criterion. The resulting daily asthma claims were

defined as daily counts of the sum of three mutually exclusive endpoints:

emergency department visits without hospitalization, direct admits for hospita-

lization, and hospitalizations admitted through the emergency department. Daily

asthma claims were further restricted to children 2–18 years of age (children

between their second and eighteenth birthdays) due to the difficulty of accurately

diagnosing asthma in very young children (0–2 years of age). Asthma claims were
summarized in the form of counts and percentage counts across gender, race and

age groups.

2.2. Air pollutant and meteorological measurements

Air quality data and meteorological data were obtained from the Michigan

Department of Natural Resources and the Environment, and from Environment

Canada. These included daily or hourly measurements of CO, NO2, SO2 and PM2.5

monitored at four air quality monitoring sites in the Detroit metropolitan area

(Allen Park, Dearborn, East 7 Mile and Linwood, Appendix A.1), 12 other sites in

Michigan, and nine additional sites in Ontario, Canada. Surface meteorological

data, including hourly measurements of temperature, relative humidity and

barometric pressure, were obtained from the Detroit City Airport weather station.

Pollutants were included in the analysis if at least 20% of the observations

exceeded the method detection limit and if at least 50% of the days had data

available. Measurements less than or equal to the method detection limit were set

to 1/2 of the limit. Daily averages for each pollutant at each site were computed

from hourly data if at least 75% of the hourly data were available and considered

valid. Another criteria pollutant, ozone (O3), is monitored in the study region at

two locations in Detroit, but unfortunately only during the warmer period.

Because we noted significant differences between O3 levels in Detroit and Wind-

sor, Canada, and because over half of the study period did not have local O3 data,

we opted not to include this pollutant. We recognize the role of O3 in respiratory

effects; however, its omission does not invalidate the results obtained for the

other pollutants as it is not identified as a potential confounder based on a

correlation analysis of O3 with the other pollutants.

The average pollutant level in Detroit was computed as the average concen-

tration among the four Detroit monitoring sites, when available. CO was averaged

from Allen Park and Linwood; NO2 and SO2 were averaged from East 7 Mile and

Linwood. Daily PM2.5 data were unavailable for 199 days at Allen Park and were

collected only every 3rd day at the other three Detroit sites (Dearborn, East 7 Mile,

Linwood). These four sites sampled and weighed PM2.5 on filters following the

Federal Reference Method, and observations at these sites were highly correlated

(r¼0.92�0.95) and had similar distributions. Hourly PM2.5 concentrations were

measured at two sites in the city of Windsor, Canada, immediately across the

Detroit River from Detroit, using tapered element oscillating microbalances. We

used the tapered element oscillating microbalances data to impute daily Federal

Reference Method PM2.5 concentrations at Allen Park. Because daily Federal

Reference Method and tapered element oscillating microbalances concentrations

were highly correlated (r¼0.90), we fitted a linear mixed model with a first-order

auto-regressive error term to estimate Federal Reference Method PM2.5:

PMAP ¼ b0þb1 PMWinþb2 Seasonþb3 Tempþb4 RHþb5Pþb6 PMWin Tempþe ð1Þ

where PMAP is the daily PM2.5 concentration in Allen Park (mg m�3), PMWin is the

daily averaged PM2.5 concentration in downtown Windsor (mg m�3), season is the

factor effect of seasons (spring¼March–May, summer¼ June–August, fall¼Septem-

ber–November, winter¼December–February), Temp is the daily average tempera-

ture (1C), RH is the daily average relative humidity (%), and P is the daily average

atmospheric pressure (Pa). Apart from the main effects, model (1) includes an

interaction term between PM2.5 and temperature. The autocorrelation structure on

the measurement error term implies that correlation between successive PM2.5

concentrations depends on the time lag of measurements, namely, the measurement

on the ith and jth day depend only on the difference 9i� j9 with corrðei ,ejÞ ¼ r9i�j9 .

Parameters b0–b6 were first estimated using 700 randomly selected days from the

897 available at Allen Park over the 3-year study period (a total of 1096 days). The

remaining 197 days were used as a validation data set. Prediction accuracy was

assessed using the correlation between observed and predicted PM2.5 concentra-

tions, and the distribution of differences between observed and predicted values in

the validation data set. A complete time-series record of daily PM2.5 concentrations

in Allen Park was derived this way and used as a measure of PM2.5 exposure.

Descriptive analyses of each pollutant were carried out to show distributional

patterns, correlations, outliers and missing data, and to identify weekly, seasonal

and long-term trends.

2.3. Time-series models

We fitted generalized additive models by aggregating data across the 3 years

(2004–2006). Single pollutant Poisson regression models with a log-linear link

were fitted using the daily counts of asthma events as the outcome. These models

included meteorological variables (Temp and RH, variables as defined in Eq. (1)),

day of week, and seasonal trends that were identified as potential covariates by

either bivariate analysis with the health outcomes or in the literature. We

separately tested pollutant exposures using 1 through 5-day lags, as well as 2-,

3- and 5-day moving averages. To account for other temporal trends, nonpara-

metric terms were used for time and Temp. The single-pollutant generalized

additive model was of the form

logEðYÞ ¼ b0þb1 Conþb2 Seasonþb3 DOWþb4 RHþSplineðTempÞþSplineðTimeÞ

ð2Þ
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where Y is the daily counts of asthma events, Con is the air pollutant concentra-

tion, DOW is the day of week, Spline(Time) or Spine(Temp) is the penalized

regression spline term with time or temperature as its argument. The smoothing

parameters were estimated using generalized cross-validation methods as imple-

mented in the MGCV package in R (Wood, 2006; R Development Core Team, 2010).

In all analyses, we also explored the possibility of including a spline term

corresponding to RH and noted that it was always determined to be statistically

indistinguishable from a linear term. Thus we simplified the models to only

include linear term for RH. There was no evidence of instability in estimation due

to modest correlation between the meteorological variables in model (2). To

visualize concentration–response curves relating daily asthma counts and pollu-

tant exposures, we examined a similar generalized additive model that used a

third smoothing term on the air pollutant concentration. The estimated spline

terms for concentration were used to display the pattern of a possible non-linear

concentration–response relationship. However, numerical results from this model

are not discussed here. Rather, our focus is a particular sub-class of non-linear

models, specifically change-point models, which allow for possible threshold

effects. Namely, to investigate threshold effects, we considered the following

generalized additive model:

logEðYÞ ¼ b0þb1 Conþb2ðCon�xÞþ þb3 Season

þb4 DOWþb5 RHþSplineðTempÞþSplineðTimeÞ ð3Þ

where function (Con�x)þ¼max{Con�x, 0}. This model is equivalent to the

following:

logEðYÞ ¼
b0 þ b1 Conþother covariates if Conox
b0�b2xþðb1þb2ÞConþother covariates if ConZx

(

where the two regression equations meet at Con¼x. The more familiar form of a

threshold model assumes b1¼0 in the model specification, i.e., there is no effect of

the exposure below the threshold. However, this assumption needs to be carefully

used and to be based on formal test that H0 : b1 ¼ 0 in Eq. (3). We do consider this

special sub-class of models as a part of our sensitivity analysis, but the more

general model (3) remains the primary model we consider.

The two regression segments corresponding to the concentration meet at

threshold x, thus avoiding discontinuities in the concentration–response relation-

ship. A test for differences in effects above and below the threshold, i.e., no

significant threshold effect, is obtained by testing H0 : b2 ¼ 0, where b̂ is the

maximum likelihood estimate of the regression parameters in Eq. (3) for a given x
(Kim et al., 2004). For a fixed value of x, the profile penalized log-likelihood

requires fitting a single generalized additive model with linear terms in the two

exposure components, followed by optimizing the likelihoods for varying x over a

given range. We considered x ranging from the 10th to 95th percentile concen-

trations of the exposure in our grid search. Threshold x estimated in this manner

closely approximates its maximum likelihood estimate. In all of the time-series

models we allowed for overdispersion relative to the Poisson variance, and used

Dean’s test to formally test for overdispersion (Dean, 1992).

2.4. Case-crossover designs

Case-crossover designs (Maclure, 1991) have been widely used to study the

effect of short-term air pollution exposure and the risk of acute adverse health

event. Under this design, for each case, exposure at the index time is compared to

exposure of the same case at a referent time. The design inherently controls for

effects of time-invariant subject-specific covariates (e.g., age, gender and race),

potential time-varying confounders (e.g., day of week and seasonal and secular

trends) with appropriate choice of the referent time windows. Additionally, by use

of self-controls, the design controls for individual-level confounders, e.g., the

severity of the underlying disease, self-management behavior, and personal

asthma episode triggers. Thus, the time-series analysis models the effect of

confounders, whereas a case-crossover design controls them by design. The
Table 1
Summary of air pollutant exposure and meteorological variables in Detroit, Michigan,

Variables Mean (SDa) Percentile

Mina 25%

CO (ppm)b 0.42 (0.35) 0.05 0

NO2 (ppb) 16.75 (7.28) 2.15 11

PM2.5 (mg m�3) 14.97 (7.93) 2.63 9

SO2 (ppb) 3.77 (3.76) 0.50 1

Temperature (1C) 10.57 (10.32) �13.66 2

Relative humidity (%) 69.98 (11.70) 31.04 61

Pressure (Pa) 1016.85 (7.27) 992.25 1012

a IQR: interquartile range; Min: minimum; Max: maximum; SD: standard deviatio
b CO: daily 3-h average from 6 to 9 a.m.
time-stratified selection strategy is more generally valid than any of the alter-

natives thus far proposed (Janes et al., 2005a; Mittleman, 2005). Lumley and Levy

(2000) and Janes et al. (2005b) present additional discussion of the overlap bias

that may occur in case-crossover studies.

We chose time-stratified referent selection with strata chosen as the calendar

month and matched by day of week. Exposures on the same day of the week

during the same calendar month as the case-event serve as control exposures.

Under this sampling strategy, conditional logistic regression models adjusted for

meteorological variables of Spline(Temp) and RH were used. Moreover, to fit

conditional logistic regression models with thresholds, we again adopted a

conditional profile likelihood technique similar to that proposed for generalized

additive models, i.e., the usual conditional logistic regression models were fitted

with the two exposure variables Con and ðCon�xÞþ (see details in Appendix A.2).

We again carried out a grid search for the location of the threshold value x that

maximized the conditional profile likelihood lcðx,b̂Þ. All conditional logistic

regression models were assessed for potential outliers and influential observa-

tions, using the model diagnostics proposed by Lu et al. (2008).

Fitted regressions for the generalized additive models and conditional logistic

regression models were summarized using risk and odds ratios with 95%

confidence intervals, respectively. Model comparison was carried out by examin-

ing the Akaike information criterion. The significance (Po0.05) of the threshold

effect was evaluated using the Wald w2 test for the regression coefficient

corresponding to ðCon�xÞþ .
3. Results

3.1. Summary of exposure measures and asthma events

Table 1 summarizes the air quality and meteorological data in
Detroit from 2004 to 2006. Over the 3-year period, the mean daily
air pollutant levels were 0.42 ppm for CO, 16.8 ppb for NO2,
3.77 ppb for SO2, and 15.0 mg m�3 for PM2.5. (Annual summaries
are reported in Appendix A.3.) Table 2 shows Spearman correla-
tions between pollutants at the various Detroit monitoring sites.
A scatterplot of the observed versus predicted PM2.5 values and a
histogram of prediction errors for the 197 validation days is
shown in Appendix A.4. The imputed data accurately matched
most of the observations with a correlation r¼0.93, and errors
were generally well below 3 mg m�3.

Descriptive analyses of asthma events by age group, gender,
race and season are shown in Table 3. A total of 12,933 asthma
events in the 2–18 year age group were observed for 7063
children during the 1096 days of the 2004–2006 period, repre-
senting an average rate of 11.8 events/day. Our composite
endpoint of acute asthma events included three types of claims.
Of the total number of claims, 80.3% were for emergency depart-
ment visits without hospitalizations, 11.9% were for emergency
department visits that ultimately led to hospitalizations, and 7.8%
were for direct admit to hospitalizations. Of the 7063 children,
60.4% had 1 claim, 17.8% had 2 claims, 10.7% had 3 claims and the
remainder had 4 or more claims. The long-term and smoothed
trend of daily asthma events (Fig. 1) shows a strong seasonal
pattern, with highest frequency during fall, and the lowest during
summer.
based on 24-h averages over 2004–2006.

IQRa

Median 75% Maxa

.21 0.35 0.52 3.05 0.31

.54 15.74 21.19 55.22 9.65

.36 13.35 18.52 68.99 9.16

.09 2.45 5.11 27.25 4.02

.05 11.04 19.77 31.00 17.72

.54 70.04 78.42 98.96 16.88

.48 1016.71 1021.21 1042.25 8.73

n.



Table 3
Characteristics of study participants (children 2–18 years of age, continuously enrolled in Medicaid with full coverage and no

other insurance). Data retrieved based on claims recorded for the pediatric Medicaid Population in Detroit, Michigan, 2004–2006.

Characteristics Number of

asthma patients

% No. of asthma

events

%

Gender Female 2863 40.53 5119 39.58

Male 4200 59.47 7814 60.42

Race African–American 6498 92.00 12157 94.00

Caucasian 237 3.36 377 2.92

Hispanic 222 3.14 355 2.74

Other 106 1.50 44 0.34

Age (years) 2rAgeo5 3090 34.65 5327 32.81

5rAgeo10 1968 22.07 3945 24.29

11rAgeo18 2005 22.49 3661 22.55

Seasona Spring 3211 24.83

Summer 1866 14.43

Fall 4732 36.59

Winter 3124 24.16

Type of event ED visits without

hospitalization

10,386 80.31

Direct admit

to hospitalization

1014 7.84

Hospitalizations

admitted through the ED

1533 11.85

Total 7063 100 12,933 100

a Season: spring¼March–May, summer¼ June–August, fall¼September–November, winter¼December–February.

Fig. 1. Trend of daily counts of asthma events for the pediatric Medicaid

population (children 2–18 years of age) in Detroit, Michigan, 2004–2006. Daily

observations are shown as points with locally estimated scatter-plot smoothing

trend shown as overlaying fitted curve. The endpoints of asthma events include

emergency department visits without hospitalization, direct admission for hospi-

talization, and hospitalizations admitted through the emergency department.

Table 2
Spearman correlations for the daily 24-h pollutant concentrations in Detroit, Michigan, 2004–2006.

Pollutant and

monitoring sites

COb PM2.5 (FRMa) NO2 SO2

Allen Park Linwood Allen Park Dearborn East 7Mile Linwood East 7Mile Linwood East 7Mile Linwood

CO Allen Park 1.00

Linwood 0.68 1.00

PM2.5 (FRM) Allen Park 0.30 0.39 1.00

Dearborn 0.26 0.41 0.93 1.00

East7Mile 0.31 0.38 0.94 0.92 1.00

Linwood 0.34 0.41 0.95 0.92 0.92 1.00

NO2 East7Mile 0.37 0.53 0.56 0.61 0.59 0.58 1.00

Linwood 0.40 0.56 0.61 0.66 0.66 0.64 0.87 1.00

SO2 East7Mile 0.21 0.31 0.50 0.51 0.53 0.52 0.49 0.55 1.00

Linwood 0.17 0.28 0.40 0.43 0.45 0.43 0.42 0.54 0.79 1.00

a FRM: federal reference method.
b CO: daily 3-h average from 6 to 9 a.m.
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3.2. Association of asthma claims with air pollutants

Table 4 shows results of the time-series generalized additive
models and case-crossover conditional logistic regression models
(both without thresholds) for the four pollutants and selected lags
for the 3-year study period. (Results for all lags and moving
averages are shown in Appendices A.5 and A.6.) Estimated
measures of association, including risk ratios, odds ratios and
95% confidence intervals for daily asthma visits, are shown for an
interquartile range increase in pollutant concentrations. Both
generalized additive model and conditional logistic regression
models show strong evidence of significant increases in daily
asthma events with increasing SO2 concentrations for 3, 4 and
5-day lags, and for 3- and 5-day moving averages. Evidence of
associations to 2-day lag or 2-day moving average was also found
using conditional logistic regression. For example, the estimated
risk ratios for daily asthma events associated with an interquartile
range increase (4.02 ppb) in SO2 concentration was 1.031 (95% CI:
1.008, 1.055) for the generalized additive model, and the esti-
mated odds ratio was 1.031 (95% CI: 1.010, 1.052) for the
conditional logistic regression models, using a 3-day lag. Strong
evidence of associations between daily asthma events with PM2.5

concentrations for 3, 4 and 5-day lags, as well as for 5-day moving
averages were found using both generalized additive models and
conditional logistic regression models. CO and NO2 were signifi-
cant only for the 4- or 5-day lags. The effect sizes as well as their
95% CIs are consistent across the two models considered for each
pollutant. We did not find evidence of a significant association for
a 1-day lag for any pollutant. The overdispersion parameter



Table 4
Comparison of GAMsa and time-stratified case-crossover CLRsa without thresholds; estimated risk and odds ratios for daily asthma events and an one

interquartile range increase of a pollutant exposure for the pediatric (children 2–18 years of age) Medicaid population in Detroit, MI, 2004–2006.

GAM without threshold Case-crossover CLR without threshold

RRa 95% CIa QAICa ORa 95% CI AICa

NO2 (ppb)
3-Day lag 1.013 0.981 1.047 6225 1.013 0.984 1.043 100,751b

5-Day lag 1.038 1.005 1.072 6202b 1.039 1.010 1.070 101,195

3-Day moving averagea 0.972 0.930 1.016 6317 1.006 0.968 1.046 103,616

5-Day moving average 1.014 0.961 1.070 6333 1.043 0.996 1.093 104,039

SO2 (ppb)
3-Day lag 1.031 1.008 1.055 6198 1.031 1.010 1.052 101,061b

5-Day lag 1.040 1.017 1.064 6191b 1.042 1.021 1.064 101,666

3-Day moving average 1.037 1.003 1.073 6322 1.049 1.019 1.081 103,873

5-Day moving average 1.078 1.035 1.122 6315 1.086 1.049 1.124 104,021

CO (ppm)
3-Day lag 0.991 0.972 1.011 6324 1.002 0.984 1.020 103,928

5-Day lag 1.023 1.004 1.043 6308b 1.021 1.003 1.039 103,829b

3-Day moving average 0.970 0.941 1.000 6328 0.996 0.970 1.023 104,042

5-Day moving average 1.003 0.967 1.041 6334 1.022 0.989 1.056 104,040

PM2.5 (lg m�3)
3-Day lag 1.029 1.006 1.052 6323 1.032 1.011 1.052 103,921

5-Day lag 1.036 1.014 1.059 6311b 1.036 1.016 1.056 103,825b

3-Day moving average 1.012 0.985 1.040 6334 1.018 0.994 1.042 104,040

5-Day moving average 1.030 1.001 1.061 6332 1.039 1.013 1.066 104,036

Bold: The RRs or ORs are statistically significant (P-value o0.05).

a AIC: Akaike information criterion; QAIC: quasi-Akaike information criterion; CI: confidence interval; CLR: conditional logistic regression; GAM:

generalized additive model; RR: risk ratio; OR: odds ratio; moving average: average for the specified number of days preceding the asthma events.
b The QAIC or AIC is the smallest among all lags for each pollutant.
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significantly differed from unity in most of the fitted generalized
additive model models using Dean’s test, thus we considered
overdispersion in all models.

Fig. 2 shows the logarithm of the profile likelihoods for
threshold x in both time-series generalized additive models and
case-crossover conditional logistic regression models, using the
lagged 5-day moving average of pollutant. The same, or nearly the
same, threshold was identified in both generalized additive
models and conditional logistic regression models for each
pollutant. We performed parallel analyses for other exposure
lags and moving averages, and found that threshold locations
were consistent with respect to lag specification. Thus, a single
threshold value was used across all lags and moving averages.
An alternative is to search for a separate x for each lag, season or
year, which complicates comparability and interpretability of
effect estimates. Table 5 shows results including risk ratios and
odds ratios for effects above the threshold, the 95% confidence
intervals, and the significance of the threshold effect based on the
Wald test for H0: b2¼0, i.e., the regression coefficient correspond-
ing to ðCon�xÞþ . These results suggest no evidence of threshold
effects for CO, NO2 or SO2 with respect to asthma outcomes. In
contrast, significant threshold effects in both generalized additive
models and conditional logistic regression models were detected
for PM2.5 with an estimated threshold of 13 and 11 mg m�3,
respectively. Effects above the PM2.5 threshold, as seen in
Table 5, were somewhat diluted in Table 4 since effects both
below and above the threshold were captured by a single
parameter. For example, the estimated risk ratio for daily asthma
visits associated with an interquartile range increase (9.2 mg m�3)
of PM2.5 (at 5-day moving averages) had a risk ratio of 1.030 (95%
CI: 1.001, 1.061) in the linear generalized additive model, and
1.066 (95% CI: 1.031, 1.102) in the threshold generalized additive
model. The corresponding estimates under case-crossover design
were 1.039 (95% CI: 1.013, 1.066) in the linear conditional logistic
regression model, and 1.054 (95% CI: 1.023, 1.086) in the thresh-
old conditional logistic regression model. Thus, the ability to
simply search and test for the significance of a threshold effect
was informative for both time-series and case-crossover
approaches. We also noted that treating pollutant effects via a
nonparametric spline term in generalized additive model or
conditional logistic regression could provide insight into the
concentration–response relationship. Fig. 3 presents the esti-
mated spline terms of pollutants, and one can distinctly notice
non-linear patterns for some pollutants, especially PM2.5.

Testing results of H0 : b1 ¼ 0, i.e., the regression coefficient
corresponding to concentration below the threshold level x, show
no significant evidence. To compare our results with a more common
version of the threshold model which assume b1¼0, we fitted the
PM2.5 models under this additional constraint. Appendix A.7 presents
results indicating that inferential results remained unchanged for
effects of PM2.5 concentrations above the threshold, although there
are minor numerical differences in parameter estimates.

We assessed the presence of outliers and influential observa-
tions for each model using diagnosis proposed by Lu et al. (2008).
For example, Fig. 4 presents a normal quantile–quantile plot of
standardized residuals and DFFITS statistics (the change in the
predicted value for a point, obtained when that point is left out of
the regression) for each day before and after removing outliers,
using 5-day moving average of PM2.5. The standardized residuals
under the Poisson assumption should approximate a standard
Gaussian distribution if the model is correctly specified. Thus the
sample quantiles of the residuals should closely follow the normal
quantiles under correct model specification, and the points on the
quantile plot should lie about the equiangular Y¼X line. A total of
11 days had 9sample quantiles943.5 in the generalized additive
model; 6 days had 9DFFITS941.5 in the conditional logistic
regression model. Inferential results and coefficients obtained in
analyses that omitted these outliers were largely unchanged,
indicating that results presented with all data points are reason-
ably robust. Since different pollutant models gave rise to different
sets of outlying and influential days, we performed this diagnostic
process as a cautionary check with and without the suspect days



Fig. 2. Plots of logarithm of profile penalized-likelihood (*log L) of generalized additive model (GAM) and logarithm of profile conditional likelihood (*c log L) of conditional

logistic regression (CLR), searching for the threshold parameters corresponding to each pollutant using 5-day moving average of pollutant concentration.
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to ensure consistency of our results. The results shown in
Tables 4 and 5 are based on all days for uniformity and compar-
ability across models.
4. Discussion

Hospital admission and emergency department visits for
asthma have been associated with air pollutants in both single
and multiple city studies and using both time-series and case-
crossover designs. Among the more recent literature, an Alaskan
study of 1641 daily Medicaid claims for children using general-
ized estimating equations associated a 10 mg m�3 increase in
daily PM10 with a 0.6% (95% CI: 0.1, 1.3) increase in outpatient
asthma visits and a 1.8% (95% CI: 0.6, 3.0) increase in inhaled
quick-relief mediation prescriptions. Stronger results were found
for weekly events and for upper quartile exposures (Chimonas
and Gessner, 2007). This study used only one air monitor sited by
a busy road, which may have resulted in exposure misclassifica-
tion. Ten air monitoring sites were used in a study in Oklahoma
City, USA, which used a negative binomial model to assess
associations between air pollutant exposures based on the mon-
itoring site closest to the child’s residential zip code, and daily
asthma hospital admissions for children 0–14 years old (Magas
et al., 2007). NO2 was a significant predictor with an additional
6.21 (95% CI: 0.68, 11.7) asthma hospitalizations per day for a
1 ppb increase; O3 and PM2.5 were not significant predictors. Daily
asthma-related pediatric emergency department visits and hos-
pital admissions in the District of Columbia, USA were associated
with daily 8-h O3 and 24-h PM2.5 levels from three monitors using
adjusted Poisson models (Babin et al., 2007). A 10 ppb O3 increase
was associated with a 4.5% (95% CI: 0.6, 8.5) increase in emer-
gency department admissions for 1–17 year-old children; a larger
effect (8.3%; 95% CI: 2.6, 14.4) was seen for 5–12 year-olds.
Age was a significant effect modifier for asthma hospitalizations
in a New York City study. Children age 6–18 years consistently
had the highest risk, using daily time-series analysis (Silverman
and Ito, 2010). In Copenhagen, marginally significant associations
were found between PM10, CO and NO2 levels and asthma
hospital admissions (Andersen et al., 2007). In Rio de Janeiro,
semi-parametric Poisson regressions were used to explore asso-
ciations between PM10, SO2, CO, NO2 and O3 and emergency
department visits for bronchial obstruction in children aged 1–12
years (Moura et al., 2009). A significant increase of 6.7% (95% CI:
1.8, 11.5) in visits was associated with a 10 mg m�3 PM10 increase
for children 0–2 years. Evidence of the adverse effect of PM10 on
pediatric asthma exacerbations and hospital admissions was also
found in Athens, Greece, especially in 0–4 year olds (Nastos et al.,
2010). In Tokyo, auto-regressive integrated moving average mod-
els were used to link emergency department asthma visits to



Table 5
Comparison of GAMsa and time-stratified case-crossover CLRsa with thresholds; estimated risk and odds ratios above the threshold for daily asthma

events and an one interquartile range increase of a pollutant exposure for the pediatric (children 2–18 years of age) Medicaid population in Detroit, MI,

2004–2006. Otherwise as Table 4.

GAM with threshold Case-crossover CLR with threshold

RRa 95% CIa QAICa ORa 95% CI AICa

NO2 (ppb) n¼23
3-Day lag 0.957 0.882 1.039 6222.9 0.960 0.894 1.030 100,751.5b

5-Day lag 1.015 0.939 1.097 6203.1b 1.003 0.936 1.075 101,197.3

3-Day moving averagea 0.937 0.845 1.039 6317.9 0.945 0.867 1.031 103,616.2

5-Day moving average 0.984 0.876 1.106 6334.9 0.958 0.867 1.059 104,038.4

SO2 (ppb) n¼8.25
3-Day lag 1.036 0.983 1.093 6199.6 1.022 0.974 1.074 101,064.3b

5-Day lag 1.049 0.994 1.106 6192.4b 1.057 1.006 1.110 101,668.5

3-Day moving average 0.948 0.861 1.043 6317.4 0.917 0.842 0.998 103,865.1

5-Day moving average 1.026 0.900 1.170 6315.8 0.960 0.855 1.078 104,019.5

CO (ppm) n¼0.45
3-Day lag 0.998 0.972 1.025 6325.2 1.003 0.979 1.026 103,930.8

5-Day lag 1.008 0.982 1.034 6305.0b 1.009 0.986 1.033 103,829.5b

3-Day moving average 0.956 0.917 0.997 6328.3 0.966 0.932 1.002 104,038.4

5-Day moving average 0.968 0.920 1.018 6328.4 0.975 0.933 1.017 104,032.4

PM2.5 (lg m�3) n¼12
3-Day lagc 1.046 1.017 1.075 6320.4 1.030 1.005 1.056 103,921.0

5-Day lagc 1.055 1.026 1.084 6308.4b 1.041 1.015 1.066 103,824.9b

3-Day moving average 1.024 0.992 1.057 6334.3 1.007 0.980 1.036 104,038.8

5-Day moving averagec 1.066 1.031 1.102 6317.9 1.054 1.023 1.086 104,033.1

Bold: the RRs or ORs above the threshold are statistically significant (P-valueo0.05).

Underline: the QAIC/AIC of the threshold model is smaller than the QAIC/AIC from the corresponding linear model.

a AIC: Akaike information criterion; QAIC: quasi-Akaike information criterion; CI: confidence interval; CLR: conditional logistic regression; GAM:

generalized additive model; RR: risk ratio; OR: odds ratio; Moving average: average for the specified number of days preceding the asthma events.
b The QAIC or AIC is the smallest among all lags for each pollutant.
c Significant threshold effect in GAMs with threshold and case-crossover CLRs with threshold, based on the Wald test for H0:b2¼0, which is the

regression coefficient corresponding toðCon�xÞþ .
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daily SO2, NO, NOx, suspended PM, CO, pressure and humidity
measurements (Abe et al., 2009). Associations with pollutants
were not statistically significant in the multi-pollutant model.
In a case-crossover design, large increases in emergency depart-
ment visits for asthma in young children (2–4 years of age)
in Edmonton, Canada were associated with 5-day lagged concen-
trations of NO2 and CO measured at three sites between April and
September; smaller increases were also associated with O3, PM10

and PM2.5 (Villeneuve et al., 2007). Results of this 10 year study
were largely unchanged after adjustments for aeroallergens.
Another Canadian study, conducted in Toronto, found similar
effects for NO2 and CO in a case-crossover analysis examining
children ages 6–12 (Lin et al., 2003). A recent case-crossover
analysis examining emergency department visits in Sydney,
Australia found the strongest associations for CO and children in
the 5–9 and 10–14 years age groups; emergency department
visits for younger children were associated with all pollutants
investigated (CO, NO2, O3, PM2.5 and PM10) (Jalaludin et al., 2008).

Several multiple city studies have been conducted. A panel
study of children in seven US and one Canadian cities and five
criteria pollutants associated 2-day lagged CO and NO2 concen-
trations with asthma exacerbation as measured by symptoms and
rescue inhaler use (Schildcrout et al., 2006). Significant increase in
respiratory-related emergency department visits across 14 hospi-
tals in seven Canadian cities was associated with daily O3, PM10

and PM2.5 levels (2-day lag) using generalized linear models,
especially in the warm season (Stieb et al., 2009). Another multi-
ple city study, conducted in the five largest cities in Australia and
the two largest in New Zealand, used case-crossover designs with
respiratory hospital admissions for children 0–14 years, and a
random effects meta-analysis to combine results across cities
(Barnett et al., 2005). The only significant finding for asthma was
a 6% (95% CI: 2.0, 12.1) increase for 5–14 year olds for an
interquartile range (5.1 ppb) increase of NO2. Effects were stron-
ger in the warmer months, and no significant effects were seen in
multiple pollutant models. In two Idaho, USA cities, daily PM10,
NO2 and SO2 were examined using generalized linear models and
splines to relate hospital admissions and medical visits for
respiratory disease (Ulirsch et al., 2007). A 24.3 mg m�3 increase
in PM10 was associated with 4.3% (P¼0.06) increase in the total
number of daily admissions for children 0–17 years of age.

Many of these studies have included children less than 2 years
of age (Barnett et al., 2005; Magas et al., 2007; Moura et al., 2009;
Nastos et al., 2010; Ulirsch et al., 2007). However, it is difficult to
diagnose asthma in this age group until persistence of symptoms
can lead to an asthma diagnosis. The misclassification of diagnoses
of asthma in children less than 2 years of age might have resulted
in invalid inference, especially for study populations that consist
mainly of this age group, for example, Moura et al. (2009) and
Nastos et al. (2010). It is also seen that some of these studies that
found no evidence or marginal significant evidence of association
might be probably due to the diagnosis misclassification issue, for
example, Ulirsch et al. (2007). Therefore, children aged 0–2 years
were excluded from our main analysis due to the possibility of
differential diagnosis accuracy for asthma in this age group. A
sensitivity analysis of 0–18 year olds revealed that effect sizes are
indeed attenuated compared to the 2–18 years age group.
Silverman and Ito (2010) have found that the peak pollution effects
on asthma are observed in children of age approximately 7–12
years. An analysis stratified by age, e.g., ages 2–6, 7–12 and 13–18
years, could potentially provide more insight into the relative
vulnerability of age groups in terms of exposure to pollutants.
However, given the limited number of claims in each group (2–6
years: 6232; 7–12 years: 4292; 13–18 years: 2409; with an
average rate of 5.7, 3.9, 2.2 event/day, respectively), we refrain
from presenting this analysis.



Fig. 3. Estimated spline terms of concentration with 95% confidence bands showing non-linear relationships between pollutant concentrations and daily asthma events,

using 5-day moving average of pollutant concentrations. Vertical reference lines show estimated threshold parameters using profile likelihood method corresponding to

each pollutant and model (*CLR: conditional logistic regression; GAM: generalized additive model.).
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The seasonal effects of pollutants can be examined using an
interaction term of concentration by season in the generalized
additive model (2). Most associations are found for SO2 and PM2.5

in summer and spring respectively, often with much larger effect
sizes than the reported overall effect that combines all seasons.
(Appendix A.8 presents exposure effects by season under the
interaction model.) Significant seasonal main effects with the
following ordering of effect sizes were found in most models:
fall4winter4spring4summer, thus, the fall peak of asthma
counts is captured by the main effect of season, and cannot be
attributed to the pollutants considered (little or no significant
results were noted for exposure effects in fall across the multiple
models). As pointed out in the literature previously, it may be more
difficult to identify pollution-related events in the fall season due
to the much larger number of visits resulting from other triggers,
especially, those associated with the start of the September school
year (Silverman et al., 2005; Johnston et al., 2005). We also fitted
the model that adds an interaction term of concentration above the
threshold by season in the generalized additive model (3). Instead
of trying to estimate a season-specific threshold, which introduces
three new parameters and additional non-linear terms in the
model, the same thresholds as in Table 5 were used for this
interaction analysis. Significance of the thresholds for PM2.5 is
found across seasons (Appendix A.9). Association of asthma and
PM2.5 concentration above the threshold are mostly found in
spring, which has substantially larger effect sizes than other
seasons or the overall effect combining all seasons. In the case-
crossover analysis, adding interaction term by season was not
possible as the exposure values are matched within season, and no
contribution to the conditional likelihood can be measured since
cases and controls have same value of season in most matched
sets. Stratified analysis by season, performed as a sensitivity
analysis, shows similar results as the interaction analysis. However,
a stratified analysis by season faces the conceptual difficulty of



Fig. 4. Model diagnosis using DFFITS statistics and quantile–quantile plot (QQ-

plots) for generalized additive model (GAM) and conditional logistic regression

(CLR), using 5-day moving average of PM2.5. Revised: deleted 11 days with

9sample quantiles943.5 in GAM and 6 days with 9Dffits9 41.5 in CLR.
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estimating the spline terms corresponding to time and meteorolo-
gical variables in a discontinuous manner for each season, and thus
should be interpreted cautiously in this context.

Many of the studies just discussed support associations
between lagged air pollutant exposures and acute asthma events,
including emergency department visits, and the pollutants
most closely associated with vehicle emissions, e.g., CO, NO2

and fine fraction PM, have been suggested as those mostly
strongly associated with asthma outcomes (Villeneuve et al.,
2007; Schildcrout et al., 2006; Oyana and River, 2005). However,
results of studies conducted in different cities and different
countries can vary due to differences in geography, ethnicity,
socioeconomic status, climate, pollutant mixtures, time activity
patterns, study cohort including age group, heterogeneity be-
tween cites (especially in multicity studies) and other reasons.

A Canadian study has compared bi-directional case-crossover
and time-series analyses, which were used to assess the associations
between size-fractionated PM and asthma hospitalization among
children 6–12 years old living in Toronto between 1981 and 1993
(Lin et al.; 2002). Both analyses revealed that coarse PM (PM2.5–10)
averaged over 5–6 days was significantly associated with asthma
hospitalization. In a recent Japanese study, generalized additive
model, generalized linear models and case-crossover analyses were
compared to investigate effect of PM2.5 on daily all-cause mortality
(Ueda et al., 2009). Comparison of time-stratified case-crossover and
time-series study, especially using asthma as outcome or a threshold
concentration–response relationship, is relatively unexplored.
Although many different analytic approaches were used in
these acute effect studies, none of them has considered the
possibility of pollutant thresholds. In the Detroit Medicaid popu-
lation, we found a 3–4% (no threshold) to 3–7% (with threshold)
increase in emergency department asthma visits for a 9.2 mg m�3

increase in PM2.5. This effect size is larger than that found in
Anchorage (Chimonas and Gessner, 2007) and Sydney (Jalaludin
et al., 2008), but comparable to that found in Rio de Janeiro
(Moura et al., 2009), Idaho (if we assume that PM2.5 represents
about half of PM10) (Ulirsch et al., 2007), and the annual results in
Edmonton. Much larger effects were seen when only the warmer
season was considered (Villeneuve et al., 2007).
4.1. Significance of thresholds

Risk estimates based on an assumption of linearity may
underestimate the true risk by diluting the effect across the
whole spectrum of pollutant levels. Our findings for asthma
associations with air pollutants, particularly for PM2.5, showed
consistent estimates of the threshold parameters in both time-
series and case-crossover analyses. Fitting nonparametric
smoothers on the exposure measure, though eminently feasible
under the generalized additive model or conditional logistic
regression framework, may not permit a direct interpretation of
risk or odds ratios with literature values (or with standards and
guidelines). Thus, the threshold model is appealing for natural
interpretability.

Identification of concentration–response relationships is
important for understanding toxicological mechanisms and sus-
ceptibility among populations. In particular, the concept and
biological basis of a threshold for acute effects, in which a
sufficient amount of a chemical must be present at its site of
action to exert deleterious effects, is well-established and can be
demonstrated for many toxic effects, although inter-individual
variability in response and qualitative changes in the response
pattern with concentration can make it difficult to establish a true
‘‘no effects’’ threshold (Eaton and Gilbert, 2008). In observational
studies such as this one, it may be impossible to detect effects at
low concentrations due to exposure misclassification, unmea-
sured or unknown covariates and confounders, and statistical
power limitations. The present analysis showed that results of
threshold models had increased effect sizes, consistency across
model types, and enhanced statistical power compared to linear
concentration–response models.

The presence of a threshold or a non-linear concentration–
response relationship can have substantial implications in risk
assessment and management, including standard setting
(Holsapple and Wallace, 2008). The form of the US National
Ambient Air Quality Standards, in which maximum concentra-
tions at stated averaging times are specified for NO2, CO, PM2.5,
O3, SO2 and Pb, represents a threshold-based approach. For
example, the National Ambient Air Quality Standards for PM2.5

is attained if ambient concentrations do not exceed 15 mg m�3 on
an annual average basis and 35 mg m�3 on a 24-h basis (US EPA,
2009). We identified thresholds from 11 to 13 mg m�3 for PM2.5,
quite close to the annual National Ambient Air Quality Standards
level, which could be considered as providing support for
this standard, although it seems more realistic to consider this
as a coincidence, e.g., other guidelines suggest that risks of
adverse outcomes (including asthma exacerbations) increase
with PM2.5 exposures with little evidence of a threshold below
which no adverse health effects would be anticipated (WHO,
2005). The presence of thresholds also has implications for
asthma education, air pollution warning systems, and disease
management.
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4.2. Limitations

The proposed method and our application in this Detroit
Medicaid population have several limitations. There could be
more than one change point in the model, leading to multiple
threshold parameters where the profile likelihood based search
may be infeasible. In this case, non-linear models could be used to
find the maximum likelihood estimates and confidence intervals
of the thresholds. However, the ease of implementation using the
usual generalized additive model and conditional logistic regres-
sion models modules is an attractive feature of the profile like-
lihood method for practitioners when only one change point is
present. Additionally, the threshold search procedure could be
further refined by allowing different threshold parameters for
each season or year.

Another issue in presenting results with multiple lags is the
choice of the lag. We presented Akaike information criterion for
each model in our results that could guide this choice. We also
implemented a distributed lag non-linear model (Gasparrini et al.,
2010) as a part of our sensitivity analysis, which revealed very
consistent results for 3–5 day lags and moving averages (results
presented in Appendices A.10 and A.11). In fact, the distributed
lag models showed longer lag effects, e.g., PM2.5 effects at 3–10
day lags and SO2 effects at 3–13 day lags were found. We also
acknowledge the possibility of residual confounding due to lagged
effect of temperature. However, in limited sensitivity analyses,
we did not notice such lagged effects for days with extreme
temperatures.

Other inherent limitations in our analysis may potentially
occur related to misclassification of the timing of events, the
definition of the composite endpoint of asthma events being of
low sensitivity or specificity, and ignoring that some claims may
have come from the same child. Since hospitalizations may be
more serious events than emergency department visits, our
definition of asthma events leads to slightly inflated effect
estimates when compared to using only emergency department
visits without hospitalizations as the endpoint. However, all
results remained significant for this more homogeneous and
restricted sub-type of outcomes. We also assumed that claims
made more than 30 days apart by the same individual are
independent and ignored any residual subject-level correlation.
Our inclusion criterion of continuous enrollment in Medicaid
excluded children with more transient medical insurance cover-
age and more mobile residential histories (13% of the study
subjects moved at least once in the 3 years). We also assumed
that emergency department visits and hospitalization admissions
for asthma were drawn from an essentially unchanging popula-
tion, and that the use of an area-wide and daily average ambient
air pollutant concentration provided a representative and
unbiased exposure measure. While these are standard assump-
tions in such studies, ways to improve exposure estimates, in
particular, have been investigated for this study (Li et al., 2011).
Exposure measurement error in time-series air pollution studies
was discussed by Zeger et al. (2000).

As for the PM2.5 imputation, the error distribution could be
estimated and used to generate multiple predictions, essentially
by adding random error to the point prediction, and then used in
outcome models multiple times to provide imputation uncer-
tainty-adjusted parameter estimate (Little and Rubin, 2002). The
multiple imputation strategy as a sensitivity analysis showed very
similar results in terms of parameter estimate and inference for
this data. Further exposure imputation issues have been dis-
cussed by Gryparis et al. (2009). Our analysis excluded O3 due to a
lack of data; it would be particularly interesting to examine this
pollutant given that its effects have been considered to be a
threshold function of concentration.
4.3. Conclusion

This study of the pediatric Medicaid population in Detroit
indicates that SO2 and PM2.5 concentrations are associated with
asthma emergency department visits and hospitalizations among
children 2–18 years of age. Further, using both time-series and
time-stratified case-crossover analyses, we demonstrate the exis-
tence of a threshold effect for PM2.5 in the range from 11 to
13 mg m�3. These findings were consistent across time-series and
case-crossover models, and suggest that threshold models can
provide enhanced statistical power compared to linear
concentration–response models, and that effect estimates based
on linear models (without thresholds) may underestimate the
true risk.
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